If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x+20=7
We move all terms to the left:
x^2+10x+20-(7)=0
We add all the numbers together, and all the variables
x^2+10x+13=0
a = 1; b = 10; c = +13;
Δ = b2-4ac
Δ = 102-4·1·13
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4\sqrt{3}}{2*1}=\frac{-10-4\sqrt{3}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4\sqrt{3}}{2*1}=\frac{-10+4\sqrt{3}}{2} $
| 5^2x+3=7^4x | | 5x+10+2x+15=2+3x+7 | | x^2-2x-10=-8 | | -4(x)=-x^2+6x+8 | | C=35d+1,200 | | –8r−1=–7r−10 | | –10+h=6h | | -8x+20=100 | | -8x+20=400 | | -s+82=2s-63 | | 0.5(x+12)=-3+0.75(x-4) | | 80+y+3y=180 | | (2)(2^x-5)=9.32 | | (8x−71)°=(5x+7)° | | -19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-19=2x/10-9-1 | | v2–9v+20=0 | | 8+4-4t=2t | | -10(x–1.7)=-3 | | .-10(x–1.7)=-3 | | 4t+6.25=44.25 | | (-8x3)(x-7)=0 | | 4x+24=5x-20 | | X2-3.79x+1.78=0 | | 0.25b+2=18 | | 3x^+18x=2 | | 4t^{2}+13t+3=0 | | 4(2y+3)-4y=-20 | | 4g^+10=11 | | 5x=62.5x=393 | | -1(5x+2)=-4(x+3) | | 22=16t^2 | | 3x-7x-12=-43 |